11. Trace the curve
$$y^2 = (x-1)(x-2)(x-3)$$
.

12. (a) If
$$I_n = \int_0^{\pi/4} \tan^n x dx$$
; prove that $I_{n-1} + I_{n+1} = \frac{1}{n}$.

Deduce the value of I_5 .

(b) Evaluate
$$\int \frac{xe^x}{(x+1)^2} dx$$
.

13. If $y = \sin(m \sin^{-1} x)$, |x| < 1; prove that :

(a)
$$(1-x^2)y_2 - xy_1 + m^2y = 0$$
 5

(b)
$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0$$

and find value of $y_n(0)$.

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

18005-4-

N	
(21:	216)
BC	A-I Sem.

Roll No.

18005

B. C. A. Examination, Dec. 2016

MATHEMATICS-I

(BCA-101)

(New Course)

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt questions from all Sections as per Section-A

(Very Short Answer Questions)

Attempt all the five questions of this Section. Each question carries 3 marks. Very short answer is required. $3 \times 5 = 15$

1. Show that $A = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix}$ is nilpotent matrix of order 2.

2. If $y = \log[\log(\log x)]$, find $\frac{dy}{dx}$.

3. Evaluate $\int \frac{(a^x - b^x)^2}{a^x b^x} dx.$

4. Calculate the area of parallelogram spanned by the vectors a = (3, -3, 1) and b = (4, 9, 2).

5. Evaluate $\lim_{n\to\infty} \frac{\sum n^2}{n^3}$.

Section-B

(Short Answer Questions)

Attempt any *two* questions out of the following three questions. Each question carries $7\frac{1}{2}$ marks. Short answer is required. $7\frac{1}{2} \times 2 = 15$

6. Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$. 7½

7. Evaluate $\int \frac{3x+1}{(x-1)^2(x+3)} dx$.

18005

Expand $\sin x$ in power of x and hence find $\sin 18^{\circ}$ upto four decimal places.

Section-C

(Detailed Answer Questions)

Attempt any three questions out of the following five questions. Each question carries 15 marks. Answer is required in detail. $15 \times 3 = 45$

9. (a) Show that $\lim_{x\to 0} \frac{e^{1/x}-1}{e^{1/x}+1}$ does not exist. 5

(b) Examine the continuity of the function at the indicated point. Also point out the type of discontinuity; if any:

$$f(x) = \begin{cases} \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \text{ at } x = 0.$$

10. Verify Cayley-Hamilton theorem for the matrix :

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

18005

and hence find A^{-1} . Also state the Cayley-Hamilton theorem.

10. Examine the continuity of the function:

$$f(x) = \begin{cases} -x^2 & \text{if} & x \le 0 \\ 5x - 4 & \text{if} & 0 < x \le 1 \\ 4x^2 - 3x & \text{if} & 1 < x < 2 \\ 3x + 4 & \text{if} & x \ge 2 \end{cases}$$

at x=0, 1 & 2.

15

- 11. Trace the curve $x^3+y^3=3$ axy.
- 15
- 12. (i) Expand log (1+x) by Maclaurin's Theorem.
- (ii) Expand sinx in powers of $(x-\pi/2)$ by using Taylor's Theorem.
- 13. Evaluate:

(i)
$$\int \frac{e^x(1+x)}{\cos^2(e^x x)} dx$$

(ii) $\int \sin x \sin 2x \sin 3x dx$

N

(Printed Pages 4)

(201217)

Roll No.....

BCA-I Sem.

18005

B.C.A. Examination, Dec. 2017

MATHEMATICS-I

(BCA-101)

(New Course)

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt questions from all sections as per instructions.

Section-A

(Very Short Answer Questions)

Note: Attempt all the **five** questions of this section. Each question carries **3** marks. Very short answer is required. $3 \times 5 = 15$

1. Show that $A = \begin{bmatrix} 1 & 1-i & 2 \\ 1+i & 3 & i \\ 2 & -i & 0 \end{bmatrix}$ is Hermitian.

3

P.T.O.

- 2. Define continuity of a function at a point. 3
- Show that the parabola y²-4ax=0 has no asymptote.
- 4. Define Gamma and Beta function. 3
- 5. Define vector in 3-dimensions with example.

3

Section-B

(Short Answer Questions)

Note: Attempt any two questions out of the following three questions. Each question carries 7½ marks. Short answer is required.

7½×2=15

6. A function f(x) is defined as follows:

$$f(x) = \begin{cases} (x^2/a) - a, & \text{when } x < a \\ 0, & \text{when } x = a \\ a - (a^2/x), & \text{when } x > a \end{cases}$$

Prove that the function f(x) is continuous at x=a.

7. Find n^{th} differential coefficient of $x^3 \cos x$.

Find the area of a rectangle having vertices
 A,B,C & D with position vectors.

$$a = \left(-1, \frac{1}{2}, 4\right), b = \left(1, \frac{1}{2}, 4\right)$$

$$c = \left(1, \frac{-1}{2}, 4\right), d = \left(-1, \frac{-1}{2}, 4\right)$$

respectively.

Section-C

(Detailed Answer Questions)

Note: Answer any three questions out of the following five questions. Each question carries 15 marks. Answer is required in detail.

15×3=45

9. Verify Cayley-Hamilton theorem

A =
$$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
Also determine the characteristics

Also determine the characteristic roots and corresponding characteristic vector of the matrix A.

18005/3

P.T.O.

Check the continuity of the following functions at

(i)
$$f(x) = \frac{|x|}{x}$$
 for $x \ne 0$ and $f(0) = 0$

(ii)
$$f(x) = \frac{e^{1/x} \sin(1/x)}{1 + e^{1/x}}$$
 for $x \ne 0$ and $f(0) = 0$.

- Trace the curve $9ay^2 = (x-2a)(x-5a)^2$.
- (i) Expand $\frac{e^x}{e^x+1}$ by Maclaurin's theorem.
 - (ii) Expand $\log x$ in power of (x-1) by Taylor's Answer is required in detail.
- Evaluate:
 - $\int \tan^4 x \ dx$

G (21218)BCA-I Sem.

Roll No.

18005

B. C. A. Examination, Dec. 2018

MATHEMATICS-I

(BCA-101)

(New Course)

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt questions from all Sections as per instructions.

Section-A

o se Descript the values of o. n. c. (g. who., de

(Very Short Answer Questions)

Attempt all the five questions. Each question carries 3 marks. Very short answer is required.

- Show that $A = \begin{bmatrix} 3 & 1+2i \\ 1-2i & 2 \end{bmatrix}$ is Hermitian.
- Define limit of a function at a point.

- 3. Find the asymptotes of the curve $\frac{a^2}{x^2} \frac{b^2}{y^2} = 1$.
- 4. State fundamental theorem of calculus.
- Define vector in 2-dimension with example.

Section-B

(Short Answer Questions)

Attempt any *two* questions out of the following three questions. Each question carries $7\frac{1}{2}$ marks. Short answer is required. $7\frac{1}{2} \times 2 = 15$

6. Determine the values of a, b, c for which the function:

$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x} & \text{for } x < 0 \\ c & \text{for } x = 0 \\ \frac{(x+bx^2)^{1/2} - x^{1/2}}{bx^{3/2}} & \text{for } x > 0 \end{cases}$$

is continuous at x = 0.

- 7. If $y = a \cos(\log x) + b \sin(\log x)$, show that: $x^2y_2 + xy_1 + y = 0 \text{ and } x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0.$
- 8. Calculate the area of parallelogram spanned by the vectors a = (1, -1, 3) and b = (2, -7, 1).

Section-C

(Detailed Answer Questions)

Attempt any *three* questions out of the following five questions. Each question carries 15 marks.

Answer is required in detail. 15×3=45

9. Verify Cayley - Hamilton theorem for the matrix:

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}.$$

Also determine the characteristic roots and corresponding characteristic vector of the matrix A.

(-1)

(i) $\frac{10001}{x - x_1} \frac{x^3 - 2x^3 - 4x^2 + 9x - 4}{x^4 - 2x^3 + 2x - 1}$

13. (i) Find the Rank of the matirx

$$A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

(ii) Find the adjoint of the matirx

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

Time: Three Hours]

Printed Pages: 4

Roll No.

BCA-I Sem.

(21119)

18005

B.C.A. Examination, November 2019

MATHEMATICS-I

(BCA-101)

[Maximum Marks: 75

Note: Attempt questions from all Sections as per instructions.

Section-A

Note: Attempt all the five question of this section. Each question carries 3 marks. Veryshort answer is required. $5 \times 3 = 15$

- Define rank of a matrix.
- Show that $\lim_{x\to 2} \frac{|x-2|}{|x-2|}$ does not exist.
- Verify Rolle's theorem for the function.

$$f(x) = 2x^3 + x^2 - 4x - 2, x \in [-\sqrt{2}, \sqrt{2}]$$

4. Evaluate:

$$\int x^2 e^x dx$$

5. Write the formula of $\vec{a} \cdot \vec{b}$ and $\vec{a} \times \vec{b}$.

Section-B

Note: Attempt any two questions out of the following three questions. Each question carries 71/2 marks. Short answer is required.

6. Solve the following system of equations by Cramers Rule

$$3x + 4y = 5$$
$$x - y = -3$$

- 7. Differentiate $(\sin x)^x$
- 8. Evaluate: A Service Modern Assist

$$\int \frac{xe^x}{(1+x)^2} dx$$

Section-C

Note: Answer any three questions out of the following five questions. Each question carries 15 marks. Answer is required in detail. 3×15=45

9. (i) Given:
$$\frac{1}{a} = \hat{i} + 3\hat{j} - 2\hat{k}$$

$$\overline{b} = -\hat{i} + 3\hat{k}$$
Find $\overline{a} \cdot \overline{b}$ and $|\overline{a} \times \overline{b}|$

(ii) Find the unit vector perpendicular to both the vectors

$$4\hat{i} - \hat{j} + 3\hat{k}$$
 and $-2\hat{i} + \hat{j} - 2\hat{k}$

- 10. Evaluate the following Integral of limit of sum $\int_{a}^{b} x dx$.
- 11. Evaluate by L' Hospital rule

(i)
$$\lim_{x \to 1} \frac{x^5 - 2x^3 - 4x^2 + 9x - 4}{x^4 - 2x^3 + 2x - 1}$$

(ii)
$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$

- 12. (i) Evaluate $\lim_{x \to 0} \frac{x |x|}{x}$
 - (ii) Given $f(x) = \frac{|x|}{x}$, for $x \neq 0$ and f(0) = 0

show that f(x) is not continuous at x = 0

- 4. Give the statement of Rolle's theorem,
- In short, explain Dot product and Cross product.

Section-B

- Note: Attempt any two questions out of the three questions. Each question carries 7½ marks. 2×7½=15
- 6. Solve the following equations by Cramer's
 Rule 3x+4y=5
 - x=y==3
- 7. Use Maclaurin's theorem to prove that $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \dots (-1)^{n/2} \frac{x^n}{n!} + \dots$
- 8. If $I_n = \int_0^{\pi/3} \tan^n x dx$ then show that (n-1) $(I_n + I_{n-2}) = (\sqrt{3})^{n-1}$

Section-C

- Note: Attempt any three questions out of the following five questions. Each question carries 15 marks. $3 \times 15 = 45$
- 9. What do you mean by L-Hospital rule? Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{\log\left(x \frac{\pi}{2}\right)}{\tan x}$ by using L-Hospital Rule.
- 10. Examine the function f(x) given by $f(x)= 10x^6-24x^5+15x^4-40x^3+108 \quad \text{for}$ maximum and minimum values.
- 11. If $\vec{F} = (x^2 + y^2)\hat{i} 2xy\hat{j}$ and curve C is the rectangle in xy-plane bounded by y=0, x=a, y=b, x=0 then prove that $\int_C \vec{F} \cdot d\vec{r} = -2ab^2$

- 11. (a) Differentiate y=x sinx log x.
 - (b) Find the maximum and minimum values of $(3x^4-8x^3+12x^2-48x+25)$ in [0, 3].
- 12. (a) Evaluate $\int x^2 \sin x \, dx$.
 - (b) Evaluate $\int (\sqrt{\sin x} \cdot \cos x) dx$.
- 13. (a) Show that the vectors $\hat{i} - 3\hat{j} + 4\hat{k}, 2\hat{i} - \hat{j} + 2\hat{k}$ and $4\hat{i} - 7\hat{j} + 10\hat{k}$ are coplanar.
 - (b) Find the area of a parallelogram whose adjacent sides are determined by the vectors.

$$\ddot{a} = \hat{i} + 2\hat{j} + 3\hat{k}$$
 and $\ddot{b} = -3\hat{i} - 2\hat{j} + \hat{k}$.

18005 (CV-III)/4

(Printed Pages 4) Roll No. (20222) BCA-I Sem.

18005 (CV-III) B.C.A. Examination, Dec.-2021 **MATHEMATICS-I**

(BCA-101)

Time: 11/2 Hours] [Maximum Marks: 75

Note: Attempt questions from all sections as per instructions.

Section-A

(Very Short Answer Questions)

Note: Attempt any two questions of this Section. Each question carries 7.5 marks. Very short answer is required. 2×7.5=15

- 1. Define continuity at a point.
- State Caley-Hamilton Theorem.

P.T.O.

function?

3. If
$$y = \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}$$
, find $\frac{dy}{dx}$

- 4. Evaluate / log_ex dx.
- Find λ such that ā and b are perpendicular vector where

$$\ddot{a} = 2\hat{i} + \lambda \hat{j} + \hat{k}, \quad \ddot{b} = \hat{i} - 2\hat{j} + 3\hat{k}.$$

Section-B

(Short Answer Questions)

Note: Attempt any one question out of the following three questions. Each question carries 15 marks. Short answer is required. 1×15=15

- Expand e^x in ascending powers of x by Maclaurin's theorem.
- 7. Differentiate xx.
- 8. Prove that

$$\begin{vmatrix} 1 & a & a^{3} \\ 1 & b & b^{3} \\ 1 & c & c^{3} \end{vmatrix} = (a - b)(b - c)(c - a)(a + b + c).$$

18005 (CV-III)/2

Section-C

(Detailed Answer Questions)

Note: Attempt any two questions out of the following five questions. Each question carries 22.5 marks. Answer is required in detail. 2×22.5=45

9. (a) Find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

(b) Determine the eigen values of the matrix

$$A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$

- 10. (a) Show that the function f(x)=|x| is continuous at x=0.
 - (b) Evaluate

$$\lim_{h\to 0} \left(\frac{\sqrt{x+h}-\sqrt{x}}{h}\right)$$

18005 (CV-III)/3

P.T.O.