- 11. Find the value of the integral $\int_0^1 \frac{dx}{1+x^2}$ by using Simpson's one-third rule and Simpson's three-eighth's rule. Hence, obtain the approximate value of π in each case.
- 12. Solve the following system by Gauss-Seidel iterative method:

$$10x + 2y + z = 9$$
$$2x + 20y - 2z = -44$$
$$-2x + 3y + 10z = 22$$

13. Discuss Euler's method to compute the numerical solution of a first order and first degree differential equation. Using Euler's method, find the solution of the differential equation $\frac{dy}{dx} = x^2 + y^2, \ y(0) = 0 \text{ in the range } 0 \le x \le 0.5$ taking h = 0.1.

P 3678.2 2995.1 2400.1 1876.2 1416.3

N bart of bodiem notifi	
(21216)	Roll No
BCA - V Sem.	waitewas

18024 managed and U

B. C. A. Examination, Dec. 2016

NUMERICAL METHODS

(BCA-504)

(New Course)

Time: Three Hours] [Maximum Marks: 75

Note: Attempt questions from all Sections as per instructions. Calculator is allowed.

Section-A

(Very Short Answer Questions)

Attempt all the *five* questions. Each question carries 3 marks. 3×5=15

- 1. Obtain the function whose first forward difference is $9x^2 + 11x + 5$.
- 2. Prove that $e^x = \left(\frac{\Delta^2}{E}\right) e^x \cdot \frac{Ee^x}{\Delta^2 e^x}$, the interval of differencing being unity.

- Describe briefly false position method to find a real root of an algebraic or transcendental equation.
- 4. Using Lagrange's interpolation formula, find f(4) from the following table:

x	0	1	2	5
f(x)	2	5	7	8

5. Evaluate $\int_0^6 \frac{dx}{1+x^2}$ using trapezoidal rule by dividing the range of intergration into six equal parts.

Section-B

(Short Answer Questions)

Attempt any *two* questions. Each question carries $7\frac{1}{2}$ marks. $7\frac{1}{2} \times 2 = 15$

6. Using Newton's divided difference formula, find (f(x) from the following data:

x	-1	0	2	3	7	10
f(x)	-11	1	1	1	141	561

Hence find f(1) and f'(1).

- 7. Using Picard's method, obtain a solution upto third approximation of the differential equation $\frac{dy}{dx} = x^4y + x \text{ with } y(0) = 3.$
- 8. Solve the following system of equations by Gauss' elimination method:

$$2x+y+4z=12 \text{ of the extraction of the extract$$

Section-C

(Detailed Answer Questions)

Attempt any *three* questions. Each question carries 15 marks. 15×3=45

- Describe Newton-Raphson's method to find a real root
 of an algebraic or transcendental equation. Also find the
 real cube root of 12 correct to five places of decimal by
 Newton-Raphson's method.
- 10. Using Gauss's interpolation formula, find the value of y for x=41 with the help of the following data:

x	30	35	40	45	50	
y	3678.2	2995.1	2400.1	1876.2	1416.3	

11. Solve by Gauss-Seidel method of iteration, the equations:

$$10x + y + z = 12$$
$$2x + 10y + z = 13$$
$$2x + 2y + 10z = 14.$$

12. Using Stirling formula, find f(28) from the following table:

$$f(20)=49225$$
, $f(25)=48316$, $f(30)=47236$, $f(35)=45926$, $f(40)=44306$.

13. Find the real root of the equation $x \log_{10} x - 1.2 = 0$. Correct to five places of decimal.

Attempt any store questions out of the following it questions. Each question curries 15 marks: $(15 \times 3 + 1)$ Using Runge-Ketta method. (ind an approximation of y ter x = 0.2 if $\frac{dy}{dx} = x + x^2$, given that $y = x + x^2$, given that $y = x + x^2$.

G (21218)

Roll No.

BCA-V Sem.

18024

B. C. A. Examination, Dec. 2018 Numerical methods (BCA-504) (New Course)

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt questions from all Sections as per instructions. Calculator is allowed.

Section-A

(Very Short Answer Questions)

Attempt all the *five* questions. Each question carries 3 marks. $3 \times 5 = 15$

- 1. Find $\sqrt{12}$ by applying Newton-Raphson's method.
- 2. Prepare a divided difference table for the following data:

x	1	2	4	07	12
f(x)	22	30	82	106	216

3. Find the first derivative of f(x) at x = 0.4 from the following table:

x	0.1	0.2	0.3	The state of the s	
y = f(x)	1.1051	1.2214	1.3498	1.4918	

4. Solve:

$$5x - y - 2z = 142$$

$$x - 3y - z = -30$$

$$2x - y - 3z = 5$$

by Gauss's elimination method.

5. Given that:

$$\frac{dy}{dx} = \frac{y - x}{y + x}, \quad y(0) = 1,$$

find y(0.1) by Picard's method.

Section-B

(Short Answer Questions)

Attempt any *two* questions out of the following three questions. Each question carries 7½ marks. 7½×2=15

6. Given f(0)=16.35, f(5)=14.88, f(10)=13.59, f(15)=12.46 and f(x)=14.00, find x.

7. Estimate the sale for 1966 using the following data:

Year	Sales (in thousand)
1931	12
1941	15
1951	20
1961	27
1971	39
1981	52

8. Find the root of $x^2 - 5x + 2 = 0$ correct to five decimal places by Newton-Raphson's method.

Section-C

(Detailed Answer Questions)

Attempt any *three* questions out of the following five questions. Each question carries 15 marks. 15×3=45

- Using Runge-Kutta method, find an approximate value of y for x = 0.2 if $\frac{dy}{dx} = x + y^2$, given that y = 1 when x = 0 and h = 0.1.
 - 10. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by using Simpson's '3/8' rule. Hence obtain the approximate value of π .

18024

VM

13. Given the following tables:

DIRECTOR

DIR_NUM	DIR_NAME	DIR_DOB
100	Arvind Gaur	30/6/43
101	Faizal Alkazi	12/8/50
102	Anuradha Kapoor	21/9/62
	PLAY	
PLAY_CODE	PLAY-NAME	DIR-NUM
1001	Jivit ya Mrit	102
1002	Bade Bhai Saab	101
1003	Galib in Delhi	102
1004	Safarnama	100
1005	Aadhe Adhure	101
1006	Konark	101
1007	Adhoori Kahani	NULL

- (i) Identify the Primary and Foreign keys of both the tables.
- (ii) Do the tables exhibit Entity and Referential Integrity Constraints? Explain.
 - (iii) Draw the entity relationship diagram to show the relationship between director and play.
 Specify the cardinality and participation constraints also.

N

(Printed Pages 4)

(201217)

Roll No.

BCA- V Sem.

18021

BCA Examination, Dec- 2017 Introduction to DBMS

(BCA-501)

(New)

Time: Three Hours |

[Maximum Marks: 75

Note: Attempt **all** questions as per the Instructions.

Section-A

Note : Attempt all **five** questions. Each question carries **three** marks. $5 \times 3 = 15$

- 1. Differentiate between DDL and DML.
- List three main advantages of database approach.
- What is relational algebra? Explain.
- Briefly describe B tree.
- 5. Explain ER diagram.

18021\4

P.T.O.

Section-B

Note: Attempt any two questions out of following 3 questions. Each question carries equal marks. 2×7.5=15

- 6. Discuss the three level architecture of DBMS.
- Explain different collision resolution approaches in hashing.
- What is strong and weak entity? Explain with example.

Section-C

Note: Attempt any **three** questions out of following 5 questions. Each question carries equal marks. $3 \times 15 = 45$

- With respect to the relational data model, define and relate with example: primary key, foreign key, super key, candidate key and prime attribute.
- Consider the following relations with underlined primary keys.

PRODUCT (Pcode, Description, Stocking Date, QtyOnHand, MinQty, Price, Discount, VCode)

18021\2

VENDOR (VCode, Name, Address, Phone)
Here a vendor can supply more than one product but a product is supplied by only one vendor.

Write SQL queries for the following:

- (i) List the names of all the vendors who supply more than one product.
- (ii) List the details of the products whose prices exceed the average product price.
- (iii) List the Name, Address and Phone of the vendors who are currently not supplying any product.
- List advantages and disadvantages of Indexed sequential, B tree and B+ tree file organization.
- 12. Write short notes on:
 - (i) Functional dependency
 - (ii) Types of SQL queries
 - (iii) Transaction processing

18021\3

P.T.O.

12. State Runge-Kutta method of second order. Using Runge-Kutta method of fourth order find the values of y (0.2), y (0.4) and y (0.6) for the following initial value

perform three iterations.

Answer is required in detail. Write Condition that y(0) = 1. Derive Newton-Raphson's method to find a root of

13. Evaluate It last every .0 = (x) anotherps out

$$\int_0^6 \frac{dx}{1+x^2} \text{ by using}$$

- (a) Trapezoidal rule bodem fobio2-22000
- (b) Simpson's 1/3 rule 3x + 20y + 17z = 101

A (21119) Roll No.

Printed Pages: 4

B.C.A.-V Sem. To notifulor stamilyongua na bard

18024

B.C.A. Examination, November-2019 NUMERICAL METHODS (BCA-504)

Time: Three Hours] [Maximum Marks: 75

Note: Attempt questions from all sections as per instructions. Calculator is allowed.

Section-A Section-A (Very Short Answer Questions)

Note: Attempt all five questions. Each question carries 3 marks. Very short answer is required not exceeding 75 words. $5 \times 3 = 15$

Evaluate the following for h = 1: $E = c^{hD}$ = x + y, and y(0) = 1

Construct a divided difference table for the following data:

x	3	5	9	15
y	2	14	38	74

- Write the formula for Simpson's 3/8th rule.
- Write the formula for Runge-Kutta method for 4th order.

Perform two iterations of Picard's method to find an approximate solution of the initial value problem:

$$\frac{dy}{dx} = x - y, \quad y(0) = 1$$

Printed Pages : 4:

Time: Three Hours | B-noise | Marks: 75

(Short Answer Questions)

Note: Answer any two questions out of the following three questions. Each question carries 71/2 marks. Short answer is required not exceeding 200 words. 21=2/7×2 rough all five questions. Each question carries

Using Euler's method find an approximate value of y for x = 1, considering h = 0.5, given that

$$\frac{dy}{dx} = x + y, \text{ and } y(0) = 1$$

Apply Newton's divided difference method to obtain an interpolatory polynomial for the following data:

x	3	5	7	9	11	13
f(x)	31	51	17	19	90	110

(3)

Find the first two derivatives of f(x) at x = 1 from the following table:

X	-2	-1"	0	T	2	3	4
f(x)	104	17	0	pml()	8	69	272

Section-C

(Detailed Answer Questions)

Note: Attempt any three questions out of the following five questions. Each question carries 15 marks. Answer is required in detail. 3×15=45

- Derive Newton-Raphson's method to find a root of the equation f(x) = 0. Prove that this method has Ouadratic Convergence.
- 10. Solve the following system of linear equations using Gauss-Seidel method:

$$10 x + 3y + 7z = 41$$
$$3x + 20 y + 17z = 101$$
$$x + 19 y + 23z = 201$$

perform three iterations.

11. Define Lagrange's interpolation formula. Obtain Lagrange's interpolatory for the following data:

x	1	3	5	7	10
f(x)	13	31	25	37	101

- 3. Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with y=1 for x=0. Find y(0.3) by Euler's method taking h=0.1.
- Define Simpson's three-eight rule for Numerical integration.
- 5. What do you understand by Gauss's eliminations method?

Section-B

(Short Answer Questions)

Note: Attempt any two questions out of the following three questions. Each question carries 71/2 marks.

$$7\frac{1}{2} \times 2 = 15$$

- 6. Use Picard's method to approximate y when x=0.2, given that y=1 when x=0 and $\frac{dy}{dx} = x y$.
- 7. Find the value of y when x=10 for the following table:

×	5	6	9	11
У	12	13	14	16

8. Using Bessel's formula, find y (25) from the following data:

×	20	24	28	32
У	24	32	35	40

Section-C

(Detailed Answer Questions)

Note: Attempt any **three** questions out of the following **five** questions. Each question carries **15** marks. $15 \times 3 = 45$

9. Apply Gauss-Seidal iteration method to solve the equations.

$$20x+y-2z=17$$

 $3x+20y-z=-18$
 $2x-3y+20z=25$

 Use Runge-Kutta method of fourth order, to find y (0.2) for the equation.

$$\frac{dy}{dx} = \frac{y - x}{y + x} y(0) = 1, \text{ take } h = 0.2$$

- 11. Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using.
 - (a) Trapezoidal rule
 - (b) Simpson's 1/3 rule.
- 12. By using Newton-Raphson's method, find the root of x⁴-x-10=0 which is nearer to x=2 correct to three places of decimal. Also obtain the rate of Convergance of Newton-Raphson's method.
- 13. (a) The following value of the function f(x) for values of x are given: f(1)=4, f(2)=5, f(7)=5, f(8)=4. Find the value of f(6) and also the value of x for which f(x) is maximum or minimum.
 - (b) Apply Lagrange's formula to find the cubic polynomial which includes the following values of x and y_x:

X	0	1	4	6
Y _×	1	-1	1	-1

D (Printed Pages 4)
(20221) Roll No.
BCA.-V Sem.

18024

B.C.A. Examination, Dec. 2020 Numerical Methods (BCA-504)

Time: Three Hours | [Maximum Marks: 75]

Note: Attempt questions from all Sections as per instructions. Calculator is allowed.

Section-A

(Very Short Answer Questions)

Note: Answer all the **five** questions. Each question carries **3** marks. $3 \times 5 = 15$

1. Find the real root of the equation:

$$f(x) = x^3 - x - 1 = 0$$

2. Define operators E, \triangle and ∇ . Also obtain relation between E and \triangle .